Abstract
Tandem queues are good mathematical models for description of information transmission in various communication systems and networks. These queues play also an important role for the validation of different decomposition algorithms designed for investigating more general queueing networks. So, their investigation is interesting for theory and applications. In this paper, we consider tandem queue suitable for modeling the systems and networks where information flows are correlated and bursty what is typical for many modern telecommunication networks. Possible correlation of customers inter-arrival times and batch arrivals are taken into account via of consideration of the Batch Markovian Arrival Process (BMAP) as input stream to the system. The system consists of two stations. The service time at the station 1 is assumed to be generally distributed. There is no buffer at this station, and customers who meet the busy server repeat attempts to enter the system in random time intervals. The service process at the station 2 is assumed to be described by the continuous time Markov chain with a finite state space. This assumption holds good, e.g., if the station 2 has a finite buffer, consists of a finite number of identical or heterogeneous servers where the service time distribution is assumed to be of PH (PHase) type. Markov chain embedded at service completion epochs at the station 1 and the process of system states at arbitrary time are under study. Ergodicity condition and algorithms for computing the steady state probabilities are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.