Abstract
Habitat loss is the single greatest threat to persistence of the critically threatened California tiger salamander (Ambystoma californiense). To aid management plans that designate critical habitat for this species, I developed and characterized 21 tetranucleotide microsatellite markers using two native populations in Santa Barbara and Alameda Counties. Allelic variation and average heterozygosities were lower in the endangered Santa Barbara population (allele range 1–4, mean 2.4; H O = 0.308 H E = 0.288) compared with the threatened Alameda population (allele range 2–10, mean 6.7; H O = 0.712, H E = 0.722). In-depth population studies using these markers will provide vital information for plans to assign critical habitat that optimize gene flow among breeding populations, as well as for identifying non-native hybrid genotypes that threaten native A. californiense stocks. Beyond the conservation goals for A. californiense, the close phylogenetic relationships within the tiger salamander complex also suggest a broad utility for population studies using these markers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.