Abstract

In this contribution, we present the tandem pumping avenue leveraged performance scaling of random fiber laser to record 3 kW level with inherent temporal stability and near-diffraction-limited beam quality. The high power system employs a four-stage master oscillator power amplifier chain. The master oscillator is a half-opened cavity structured random distributed feedback fiber laser centered at 1080 nm and pumped by incoherent amplified spontaneous emission source. Narrowband random laser seed is selected by employing a spectral filtering module with a maximum output power of 1.08 W, full width at half maximum linewidth of 0.47 nm and spectral optical-signal-to-noise ratio of about 42 dB. As to the main amplification stage, for given 104 W pre-amplified random laser seed and 3.61 kW pump laser, an ultimate output power of 3.03 kW can be obtained, corresponding to an optical-to-optical conversion efficiency of 81.05%. Nearly single-transverse-mode amplified random laser can be achieved even at full power level for inherent high thermal modal instability threshold enabled by tandem pumping and inducing bending loss for high-order transverse-mode. Further performance scaling of this high power random laser system, such as power boosting, operation wavelength tuning and linewidth alteration, is the next goal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call