Abstract

AbstractControlling the behavior of terminal alkynes in metal-catalyzed intermolecular tandem reactions is a formidable challenge despite the potential advantage offered by these strategies in modern synthesis. Herein, we describe that a nickel catalyst enables a tandem process involving the rapid dimerization of terminal alkynes into 1,3-enynes and the cycloaddition of these intermediates with an azetidinone, an oxetanone or benzocyclobutenones. Significantly, the slow or sequential addition of reagents and catalysts is not required to orchestrate their reactivity. These results are in stark contrast with previous cycloadditions of terminal alkynes with strained four-membered ring substrates, which previously led to oligomerization or cyclotrimerization, except in the case of tert-butylacetylene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.