Abstract

Refrigerated waterless transport at 12 °C of live shrimp (Litopenaeus vannamei) causes flesh quality deterioration, and the underlying mechanism remains unknown. Herein, proteomics and bioinformatics analyses were used to elucidate the molecular mechanism of flesh quality changes. The result showed that 33 and 44 of the differentially abundant proteins (DAPs) were, respectively, identified in the acute cold (AC) group and the combined stress of acute cold and waterless duration (AC+WD) group, which were mostly involved in the metabolism processes and cellular structure of animal tissues, and notably enriched in biological pathways such as lysosome, glycolysis/gluconeogenesis, and focal adhesion. Furthermore, the changes in color and texture properties were closely associated with tubulin, gelsolin, laminin, trypsin-1, dipeptidyl peptidase, triosephosphate isomerase, and aldehyde dehydrogenase. Therefore, these DAPs could be used as potential biomarkers to monitor the deterioration of shrimp flesh quality during refrigerated waterless transportation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.