Abstract

We report a facile Ru-catalyzed route to alkenes from unsaturated fatty acids (alkenoic fatty acids) via readily accessible catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers with lower activation barriers. Substrates capable of tandem isomerization-decarboxylation processes (oleic acid, undecylenic acid) are readily converted to mixtures of alkenes. A catalytic cycle is proposed that relies on isomerization positioning double bonds proximate to the acid function to enable facile decarboxylation. To elucidate the proposed mechanistic pathway, substrates that do not undergo decarboxylation under these catalytic conditions (methyl oleate) are compared with those that cannot isomerize the position of unsaturation (cinnamic acid). Both were shown to be operational under these catalytic reaction conditions. Another illustrative com...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call