Abstract

α-Azido ketones and their vinylogous relatives β-alkoxy-γ-azido enones are versatile building blocks for constructing diverse heterocyclic products, but are prone to azide decomposition. Here, we report their condensation with propargylic amines and investigate the fate of the intermediate azido-enamine condensation products, both experimentally and theoretically. Efficient intramolecular cycloaddition was observed for electron-poor azide substrates, and a range of diversely substituted [1,2,3]triazolo[1,5-a]pyrazine products is reported. For electron-rich substrates, azide decomposition predominated. Computational modeling of possible pathways from the azido-enamine intermediates revealed two alternative mechanisms for azide decomposition, which were consistent with observed side products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.