Abstract

Multicellular organisms use dedicator of cytokinesis (DOCK) family guanine nucleotide exchange factors (GEFs) to activate Rac/Rho-of-plants small GTPases and coordinate cell shape change. In developing tissues, DOCK signals integrate cell-cell interactions with cytoskeleton remodeling, and the GEFs cluster reversibly at specific organelle surfaces to orchestrate cytoskeletal reorganization. The domain organizations among DOCK orthologs are diverse, and the mechanisms of localization control are poorly understood. Here, we use combinations of transgene complementation and live-cell imaging assays to uncover an evolutionarily conserved and essential localization determinant in the DOCK-GEF named SPIKE1. The SPIKE1-DHR3 domain is sufficient for organelle association in vivo, and displays a complicated lipid-binding selectivity for both phospholipid head groups and fatty acid chain saturation. SPIKE1-DHR3 is predicted to adopt a C2-domain structure and functions as part of a tandem C2 array that enables reversible clustering at the cell apex. This work provides mechanistic insight into how DOCK GEFs sense compositional and biophysical membrane properties at the interface of two organelle systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call