Abstract

The tandem behavior of a telecommunication system with finite buffers and repeated calls is modeled by the performance of a finite capacityG/M/1 queueing system with general interarrival time distribution, exponentially distributed service time, the first-come-first-served queueing discipline and retrials. In this system a fraction of the units which on arrival at a node of the system find it busy, may retry to be processed, by merging with the incoming arrival units in that node, after a fixed delay time. The performance of this system in steady state is modeled by a queueing network and is approximated by a recursive algorithm based on the isolation method. The approximation outcomes are compared against those from a simulation study. Our numerical results indicate that in steady state the non-renewal superposition arrival process, the non-renewal overflow process, and the non-renewal departure process of the above system can be approximated with compatible renewal processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call