Abstract

Integrating tandem solar cell architectures into devices can improve their power conversion efficiency (PCE) by overcoming the limited incident light absorption range of a single absorber and reducing the thermalization loss. Here, fabricated tandem solar cells are successfully fabricated employing different absorber materials, in this case perovskite and Cu(In,Ga)(S,Se)2 (CIGS) as top and bottom cells, respectively. For cost effectiveness most tandem device manufacturing processes are achieved by solution‐based methods, which even provide the electrode layers. Using such a process to create a tandem device, a PCE of 8.34% for the semitransparent perovskite top solar cell and 2.48% for the CIGS bottom solar cell is obtained, resulting in an overall efficiency of 10.82% for the four‐terminal tandem device. This result highlights the potential of this solution‐based tandem configuration as a way to facilitate the creation of simple and inexpensive efficient light‐utilizing solar cell devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.