Abstract

BackgroundGreen chemistry is a rapidly developing new field that provides us with a proactive avenue for the sustainable development of future science and technologies. Green chemistry uses highly efficient and environmentally benign synthetic protocols to deliver lifesaving medicines, accelerating lead optimization processes in drug discovery, with reduced unnecessary environmental impact. From this view point, it is desirable to use water instead of organic solvents as a reaction medium, since water is safe, abundant and an environmentally benign solvent.ResultsA convenient one-pot method for the efficient synthesis of the novel Zwitterion derivatives 4a-pvia a three-component condensation reaction of barbituric acid derivatives 1a,b, dimedone 2, and various aldehydes 3 in the presence of aqueous diethylamine media is described. This new approach is environmentally benign, with clean synthetic procedure, short reaction times and easy work-up procedure which proceeded smoothly to provide excellent yield (88-98%). The synthesized products were characterized by elemental analysis, IR, MS, NMR and CHN analysis. The structure of 4a was further confirmed by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group Pbca with α = 14.6669 (5) Å, b = 18.3084 (6) Å, c = 19.0294 (6) Å, α = 90°, β = 90°, = 90°, V = 5109.9 (3) Å3, and Z = 8. The molecules are packed in crystal structure by weak intermolecular C–H⋅ ⋅ ⋅O hydrogen bonding interactions.ConclusionsAn environmentally benign Aldol-Michael protocol for the synthesis of dimedone-barbituric derivatives using aqueous diethylamine medium is achieved.

Highlights

  • Green chemistry is a rapidly developing new field that provides us with a proactive avenue for the sustainable development of future science and technologies

  • As a part of our work on one-pot multicomponent reactions (MCRs) for the synthesis of various heterocyclic compounds, we report here a highly efficient procedure for the preparation of dimedone-barbituric derivatives based on tandem Aldol-Michael reactions using aqueous diethylamine medium

  • In a typical experimental procedure, a mixture of barbituric acid 1a,b, dimedone 2 and aromatic aldehyde 3 in water was stirred in the presence of a stoichiometric amount of diethylamine (1.0 equiv.) to afford the ‘Zwitterion adduct salts’ of dimedone-barbituric acid derivative 4a in high yields (Scheme 1)

Read more

Summary

Results

A convenient one-pot method for the efficient synthesis of the novel Zwitterion derivatives 4a-p via a three-component condensation reaction of barbituric acid derivatives 1a,b, dimedone 2, and various aldehydes 3 in the presence of aqueous diethylamine media is described. This new approach is environmentally benign, with clean synthetic procedure, short reaction times and easy work-up procedure which proceeded smoothly to provide excellent yield (88-98%). The structure of 4a was further confirmed by single crystal X-ray diffraction. The molecules are packed in crystal structure by weak intermolecular C–H⋅ ⋅ ⋅O hydrogen bonding interactions

Conclusions
Background
Results and discussion
Grieco PA
23. Breslow R
27. Jursic BS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call