Abstract

Background Cancer stem cells (CSCs) are the cause of cancer recurrence because they are resistant to conventional therapy and contribute to cancer growth and metastasis. Endocrinotherapy is the most common breast cancer therapy and acquired tamoxifen (TAM) resistance is the main reason for endocrinotherapy failure during such therapy. Although acquired resistance to endocrine treatment has been extensively studied, the underlying mechanisms are unclear. We hypothesized that breast CSCs played an important role in TAM-induced resistance during breast cancer therapy. Therefore, we investigated the biological characteristics of TAM-resistant (TAM-R) breast cancer cells. Methods Mammosphere formation and tumorigenicity of wild-type (WT) and TAM-R MCF7 cells were tested by a mammosphere assay and mouse tumor xenografts respectively. Stem-cell markers (SOX-2, OCT-4, and CD133) and epithelial-mesenchymal transition (EMT) markers were tested by quantitative real-time (qRT)-PCR. Morphological observation was performed to characterize EMT. Results After induction of TAM resistance, TAM-R MCF7 cells exhibited increased proliferation in the presence of TAM compared to that of WT MCF7 cells (P <0.05), indicating enhanced TAM resistance of TAM-R MCF7 cells compared to that of WT MCF7 cells. TAM-R MCF7 cells showed enhanced mammosphere formation and tumorigenicity in nude mice compared to that of WT MCF7 cells (P <0.01), demonstrating the elevated CSC properties of TAM-R MCF7 cells. Consistently, qRT-PCR revealed that TAM-R MCF7 cells expressed increased mRNA levels of stem cell markers including SOX-2, OCT-4, and CD133, compared to those of WT MCF7 cells (P <0.05). Morphologically, TAM-R MCF7 cells showed a fibroblastic phenotype, but WT MCF7 cells were epithelial-like. After induction of TAM resistance, qRT-PCR indicated that MCF7 cells expressed increased mRNA levels of Snail, vimentin, and N-cadherin and decreased levels of E-cadherin, which are considered as EMT characteristics (P <0.05). Conclusion TAM-R MCF7 cells possess CSC characteristics and may be responsible for TAM resistance during breast cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.