Abstract

Travel time estimation has been recognized as an important research topic that can find broad applications. Existing approaches aim to explore mobility patterns via trajectory embedding for travel time estimation. Though state-of-the-art methods utilize estimated traffic condition (by explicit features such as average traffic speed) for auxiliary supervision of travel time estimation, they fail to model their mutual influence and result in inaccuracy accordingly. To this end, in this article, we propose an improved traffic-aware model, called TAML, which adopts a multi-task learning network to integrate a travel time estimator and a traffic estimator in a shared space and improves the accuracy of estimation by enhanced representation of traffic condition, such that more meaningful implicit features are fully captured. In TAML, multi-task learning is further applied for travel time estimation in multi-granularities (including road segment, sub-path, and entire path). The multiple loss functions are combined by considering the homoscedastic uncertainty of each task. Extensive experiments on two real trajectory datasets demonstrate the effectiveness of our proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call