Abstract
The hierarchical equations of motion (HEOM), derived from the exact Feynman-Vernon path integral, is one of the most powerful numerical methods to simulate the dynamics of open quantum systems. Its applicability has so far been limited to specific forms of spectral reservoir distributions and relatively elevated temperatures. Here we solve this problem and introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles, equivalent to an optimized rational decomposition. This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy, and long-time stability. Moreover, the technique can directly be implemented in other approaches such as Green's function, stochastic, and pseudomode formulations. As one highly nontrivial application, for the subohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.