Abstract

Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers. In this work, an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance. Utilizing this dual strategy, 3,5-bis(trinitromethyl)-1,2,4-oxadiazole (3) was synthesized, resulting in the formation of two distinct crystal morphologies (needle and sheet) corresponding to two crystal forms (3-a and 3-b). Encouragingly, while maintaining ultra-high oxygen balance (21.73%), 3 achieves impressive densities (1.97–1.98 g/cm3). To our knowledge, the density of 1.98 g/cm3 for 3-a sets a new record among that of nitrogen-rich monocyclic compounds. Notably, practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3, increasing the impact sensitivity and friction sensitivity from 1 J to 80 N (3-a) to 10 J and 240 N (3-b), respectively. Additionally, the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability. This work provides an efficient strategy to enhance performance of trinitromethyl derivatives, broadening the path and expanding the toolbox for energetic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.