Abstract
Heat is almost everywhere. Unlike for electricity, which can be easily manipulated, the current ability to control heat is still highly limited owing to spontaneous thermal dissipation imposed by the second law of thermodynamics. Optical illumination and pressure have been used to switch endothermic/exothermic responses of materials via phase transitions; however, these strategies are less cost-effective and unscalable. Herein, we spectroscopically demonstrate the glassy crystal state of 2-amino-2-methyl-1,3-propanediol (AMP) to realise an affordable, easily manageable approach for thermal energyrecycling. The supercooled state of AMP is so sensitive to pressure that even several mega-pascals can induce crystallization to the ordered crystal, resulting in an substantial temperature increase of 48 K within 20 s. Furthermore, we demonstrate a proof-of-concept device capable of programming heat with an extremely high work-to-heat conversion efficiency of ∼383. Such delicate, efficient tuning of heat might remarkably facilitate rational utilisation of waste heat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.