Abstract
Wetting of carbon surfaces is one of the most widespread, yet poorly understood, physical phenomena. Control over wetting properties underpins the operation of aqueous energy-storage devices and carbon-based filtration systems. Electrowetting, the variation in the contact angle with an applied potential, is the most straightforward way of introducing control over wetting. Here, we study electrowetting directly on graphitic surfaces with the use of aqueous electrolytes to show that reversible control of wetting can be achieved and quantitatively understood using models of the interfacial capacitance. We manifest that the use of highly concentrated aqueous electrolytes induces a fully symmetric and reversible wetting behavior without degradation of the substrate within the unprecedented potential window of 2.8 V. We demonstrate where the classical "Young-Lippmann" models apply, and break down, and discuss reasons for the latter, establishing relations among the applied bias, the electrolyte concentration, and the resultant contact angle. The approach is extended to electrowetting at the liquid|liquid interface, where a concentrated aqueous electrolyte drives reversibly the electrowetting response of an insulating organic phase with a significantly decreased potential threshold. In summary, this study highlights the beneficial effect of highly concentrated aqueous electrolytes on the electrowettability of carbon surfaces, being directly related to the performance of carbon-based aqueous energy-storage systems and electronic and microfluidic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.