Abstract

In this paper, the impacts of the recycled signal on the dynamic complexity have been studied theoretically and numerically in a prototypical nonlinear dynamical system. The Melnikov theory is employed to determine the critical boundary, and the statistical complexity measure (SCM) is defined and calculated to quantify the dynamic complexity. It has been found that one can switch the dynamics from the periodic motion to a chaotic one or suppress the chaotic behavior to a periodic one, merely via adjusting the time delay or the amplitude of the recycled signal, therefore, providing a candidate to tame the dynamic complexity in nonlinear dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.