Abstract

Recent analyses of ancient Mesopotamian mitochondrial genomes have suggested a genetic link between the Indian subcontinent and Mesopotamian civilization. There is no consensus on the origin of the ancient Mesopotamians. They may be descendants of migrants, who founded regional Mesopotamian groups like that of Terqa or they may be merchants who were involved in trans Mesopotamia trade. To identify the Indian source population showing linkage to the ancient Mesopotamians, we screened a total of 15,751 mitochondrial DNAs (11,432 from the literature and 4,319 from this study) representing all major populations of India. Our results although suggest that south India (Tamil Nadu) and northeast India served as the source of the ancient Mesopotamian mtDNA gene pool, mtDNA of these ancient Mesopotamians probably contributed by Tamil merchants who were involved in the Indo-Roman trade.

Highlights

  • The origin and civilization of people living in ancient Mesopotamia has been the subject of intense debate over the past several decades

  • This study has suggested that the skeletal remains from Mesopotamia belonged to people who have genetic affinity with the populations living in the Indian subcontinent

  • It seems difficult to identify the exact source population from Indian subcontinent that contributed to the mitochondrial DNA (mtDNA) signatures of the ancient Mesopotamian MK 13G 117, TQ 28F 112, and TQ 28F 256 individuals based only on the mtDNA hypervariable control region matches, as fast mutation rate within this region can lead to similarities due to homoplasy [9]

Read more

Summary

Introduction

The origin and civilization of people living in ancient Mesopotamia has been the subject of intense debate over the past several decades. It seems difficult to identify the exact source population from Indian subcontinent that contributed to the mtDNA signatures of the ancient Mesopotamian MK 13G 117, TQ 28F 112, and TQ 28F 256 individuals based only on the mtDNA hypervariable control region matches, as fast mutation rate within this region can lead to similarities due to homoplasy [9].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.