Abstract

Abstract INTRODUCTION Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma-neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity, in a manner similar to normal-appearing cortex, but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. METHODS Here, we acquired invasive electrophysiologic recordings to sample both normal-appearing and glioma-infiltrated cortex during speech initiation in order to measure language task-related circuit dynamics of IDH-wild-type glioblastoma patients. We then applied an information theoretical framework to directly compare the encoding capacity and decodability of signals arising from these regions. RESULTS We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex, but recruits a diffuse spatial network. On a temporal scale, we show that glioma-infiltrated cortex has lower capacity for information encoding when performing nuanced tasks such as speech production of monosyllabic versus polysyllabic words. As a result, temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex, but not from glioma-infiltrated cortex. CONCLUSION These findings inform our understanding of cognitive processing in patients with malignant gliomas and have implications for patient survival, neuromodulation, and prosthetics in patients with malignant gliomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.