Abstract

Tamavidin 2 is a fungal tetrameric protein that binds with high affinity to biotin, like avidin and streptavidin. We replaced asparagine-115, which lies in a subunit–subunit interface of tamavidin 2, with cysteine to generate the novel, highly thermostable protein tamavidin 2-HOT. Tamavidin 2-HOT retained more than 80% of its biotin-binding activity even after incubation at 99.9°C for 60min and was fully active in 70% dimethylsulfoxide for 30min, whereas in these harsh conditions, avidin, streptavidin, and tamavidin 2 lost their activities (less than 20% of their biotin-binding activities). The Tm in which the biotin-binding activity becomes half of tamavidin 2-HOT was 105°C, at least 20°C higher than those of avidin, streptavidin, and tamavidin 2. Because a reducing agent removed the thermal stability of tamavidin 2-HOT, the N115C mutation likely created disulfide bridges that stabilized inter-subunit associations. Tamavidin 2-HOT is efficiently produced in the soluble form by Escherichia coli for practical use. The isoelectric point of tamavidin 2-HOT (7.4) is sufficiently low to reduce the chance for non-specific binding of non-target molecules due to high positive charges. Therefore, tamavidin 2-HOT may be useful in diverse novel applications that take advantage of its high biotin-binding capability that can withstand harsh conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.