Abstract

When resources are limited, organisms face allocation conflicts. Indeterminate growth creates a persistent conflict with reproduction, as growth may enhance future reproduction, but diverts resources from current reproduction. Little is known about allocation trade-offs in mammals with indeterminate growth. We studied growth and reproduction in adult female eastern grey kangaroos (Macropus giganteus), an iteroparous mammal with indeterminate growth. Allocation trajectories varied with age and size: for 4-year-old females, fecundity increased from 30 to 82% from shortest to average-sized individuals. Older females had high fecundity regardless of size. The smallest females grew 30% more annually than average-sized females, but females that reached average size at an older age had lower growth rates. Environmental conditions affected allocation to size and reproduction. Rainy springs increased fecundity from 61 to 84% for females that had previously reproduced, but rainy winters reduced leg growth. Females in better relative condition grew 40% more than average, whereas most young of females below average relative condition failed to survive to 10months of age. These results highlight an age-specific trade-off between growth and reproduction. Tall young females benefit from a smaller trade-off between somatic growth and early fecundity than shorter females of the same age, but older females appear to favor reproduction over growth regardless of size. Our study highlights how individual heterogeneity determines trade-offs between life-history components. We speculate that cohort effects affect age-specific reproductive success in this long-lived mammal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.