Abstract

Communication through airborne volatile organic compounds (VOCs) and root exudates plays a vital role in the multifarious interactions of plants. Common ragweed (Ambrosia artemesiifolia L.) is one of the most troublesome invasive alien species in agriculture. Below- and aboveground chemical interactions of ragweed with crops might be an important factor in the invasive species' success in agriculture. In laboratory experiments, we investigated the contribution of intra- and interspecific airborne VOCs and root exudates of ragweed to its competitiveness. Wheat, soybean, and maize were exposed to VOCs emitted from ragweed and vice versa, and the adaptation response was measured through plant morphological and physiological traits. We observed significant changes in plant traits of crops in response to ragweed VOCs, characterized by lower biomass production, lower specific leaf area, or higher chlorophyll contents. After exposure to ragweed VOCs, soybean and wheat produced significantly less aboveground dry mass, whereas maize did not. Ragweed remained unaffected when exposed to VOCs from the crops or a conspecific. All crops and ragweed significantly avoided root growth toward the root exudates of ragweed. The study shows that the plant response to either above- or belowground chemical cues is highly dependent on the identity of the neighbor, pointing out the complexity of plant-plant communication in plant communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call