Abstract

A major question in developmental biology is how the early embryonic axes are established. Recent studies using different model organisms and mammalian in vitro systems have revealed the surprising result that most of the early posterior embryonic body forms from a Wnt-regulated bipotential neuromesodermal progenitor population that escapes early germ layer patterning. Part of the regulatory network that drives the maintenance and differentiation of these progenitors has recently been determined, but much remains to be discovered. This review discusses some of the common features present in all vertebrates, as well as unique aspects that different species utilize to establish their anterior-posterior (A-P) axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.