Abstract
How the online social media, like Twitter or its variant Weibo, interacts with the stock market and whether it can be a convincing proxy to predict the stock market have been debated for years, especially for China. As the traditional theory in behavioral finance states, the individual emotions can influence decision-makings of investors, it is reasonable to further explore these controversial topics systematically from the perspective of online emotions, which are richly carried by massive tweets in social media. Through thorough studies on over 10 million stock-relevant tweets and 3 million investors from Weibo, it is revealed that inexperienced investors with high emotional volatility are more sensible to the market fluctuations than the experienced or institutional ones, and their dominant occupation also indicates that the Chinese market might be more emotional as compared to its western counterparts. Then both correlation analysis and causality test demonstrate that five attributes of the stock market in China can be competently predicted by various online emotions, like disgust, joy, sadness and fear. Specifically, the presented prediction model significantly outperforms the baseline model, including the one taking purely financial time series as input features, on predicting five attributes of the stock market under the $K$-means discretization. We also employ this prediction model in the scenario of realistic online application and its performance is further testified.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.