Abstract

BackgroundGenome of an organism has always fascinated life scientists. With the discovery of restriction endonucleases, scientists were able to make targeted manipulations (knockouts) in any gene sequence of any organism, by the technique popularly known as genome engineering. Though there is a range of genome editing tools, but this era of genome editing is dominated by the CRISPR/Cas9 tool due to its ease of design and handling. But, when it comes to clinical applications, CRISPR is not usually preferred. In this review, we will elaborate on the structural and functional role of designer nucleases with emphasis on TALENs and CRISPR/Cas9 genome editing system. We will also present the unique features of TALENs and limitations of CRISPRs which makes TALENs a better genome editing tool than CRISPRs. Main bodyGenome editing is a robust technology used to make target specific DNA modifications in the genome of any organism. With the discovery of robust programmable endonucleases-based designer gene manipulating tools such as meganucleases (MN), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein (CRISPR/Cas9), the research in this field has experienced a tremendous acceleration giving rise to a modern era of genome editing with better precision and specificity. Though, CRISPR-Cas9 platform has successfully gained more attention in the scientific world, TALENs and ZFNs are unique in their own ways. Apart from high-specificity, TALENs are proven to target the mitochondrial DNA (mito-TALEN), where gRNA of CRISPR is difficult to import. This review talks about genome editing goals fulfilled by TALENs and drawbacks of CRISPRs. ConclusionsThis review provides significant insights into the pros and cons of the two most popular genome editing tools TALENs and CRISPRs. This mini review suggests that, TALENs provides novel opportunities in the field of therapeutics being highly specific and sensitive toward DNA modifications. In this article, we will briefly explore the special features of TALENs that makes this tool indispensable in the field of synthetic biology. This mini review provides great perspective in providing true guidance to the researchers working in the field of trait improvement via genome editing.

Highlights

  • Genome of an organism has always fascinated life scientists

  • Genome editing Genome editing is a procedure that allows for sitespecific modifications to be made in the genome of any organism [1]

  • Genome editing is being applied in many plant and animal species

Read more

Summary

Conclusions

TALEN is a robust and promising genome editing tool which offers the scientific community a wide choice to target unlimited sequences of any organism. It is a powerful tool with high specificity and precision with low cytotoxicity which makes it ideal for therapeutic applications especially in humans. It is easy and relatively cheap to design and assemble TALENs and it becomes the first choice for targeted mutagenic applications. The potentials of TALENs are neglected over CRISPR due to its ease of design but, when it comes to the real world problems, the outstanding competence of TALENs is undoubted

Background
Design and Assembly
Findings
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call