Abstract

This paper is the first part of our project towards classifications of smooth projective $3$-folds $X$ with $\kappa(X) = -\infty$ admitting a non-isomorphic etale endomorphism. We can prove that for any extremal ray $R$ of divisorial type, the contraction morphism $\pi_R\colon X\to X'$ associated to $R$ is the blowing-up of a smooth $3$-fold $X'$ along an elliptic curve. The difficulty is that there may exist infinitely many extremal rays on $X$. Thus we introduce the notion of an `ESP' which is an infinite sequence of non-isomorphic finite etale coverings of $3$-folds with constant Picard number. We can run the minimal model program (`MMP') with respect to an ESP and obtain the `FESP' $Y_{\bullet}$ of $(X, f)$ which is a distinguished ESP with \textit{extremal rays of fiber type} (cf. Definition 3.6). We first classify $Y_{\bullet}$ and then blow-up $Y_{\bullet}$ along elliptic curves to recover the original $X$. The finiteness of extremal rays of $\overline{\rm NE}(X)$ is verified in certain cases (cf. Theorem 1.4). We encounter a new phenomenon showing that our \'{e}taleness assumption is related with torsion line bundles on an elliptic curve (cf. Theorem 1.5).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call