Abstract

Let p be a prime number. We study certain etale cohomology groups with coefficients associated to a p-adic Artin representation of the Galois group of a number field k. These coefficients are equipped with a modified Tate twist involving a p-adic index. The groups are cofinitely generated, and we determine the additive Euler characteristic. If k is totally real and the representation is even, we study the relation between the behaviour or the value of the p-adic L-function at the point e in its domain, and the cohomology groups with p-adic twist 1-e. In certain cases this gives short proofs of a conjecture by Coates and Lichtenbaum, and the equivariant Tamagawa number conjecture for classical L-functions. For p=2 our results involving p-adic L-functions depend on a conjecture in Iwasawa theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.