Abstract

Separator is supposed to own outstanding thermal stability, superior wettability and electrolyte uptake, which is essential for developing high-rate and safe lithium metal batteries (LMBs). However, commercial polyolefin separators possess poor wettability and limited electrolyte uptake. For addressing this issue, we put forward a composite separator to implement above functions by doping layered-silicate (talcum) into polyvinylidene fluoride (PVDF). With significant improvement of electrolyte absorption benefiting from the strong adsorption energy values (-1.64 ∼ -1.70 eV) between talcum and the electrolyte in lithium metal batteries, PVDF/Talcum (PVDF/TM) composite separator owns a small contact angle and superior electrolyte uptake. PVDF/TM composite separator with 10 wt% talcum (T-10) owns a tiny contact angle of 8°, while those of polypropylene (PP) and PVDF are 48° and 20° with commercial electrolyte. Moreover, the addition of thermotolerant talcum endows the T-10 composite separator with great thermostability, whose thermal shrinkage is only 5.39% at 150 °C for 0.5 h. The cell with LiFeO4 cathode and the T-10 composite separator reaches 91.7 mAh/g in discharge capacity at 4.8 mA/cm2 (10 C), far superior to that with pure PVDF separator (56.3 mAh/g) and PP (51.4 mAh/g).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call