Abstract

We demonstrate that periodic self-imaging of light patterns with certain input periods can be effectively realized in one-dimensional and two-dimensional helical waveguide arrays. The band structure is drastically dependent on the helix radius and period, and the complete collapse of quasi-energy bands occurs for a certain helix radius and period, which strongly affects the intensity carpet and the Talbot length of the Talbot self-imaging effect. Talbot length would extend to infinity, as the helix radius and period approach the corresponding critical values corresponding to the band collapse, where the inversion of intensity distribution between even and odd waveguides is observed for the binary input pattern with π/2 phase shift between the adjacent waveguides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call