Abstract

Transcription activator-like (TAL) effectors are bacterial type III secretion proteins that function as transcription factors in plants during Xanthomonas/plant interactions, conditioning either host susceptibility and/or host resistance. Three types of TAL effector associated resistance (R) genes have been characterized—recessive, dominant non-transcriptional, and dominant TAL effector-dependent transcriptional based resistance. Here, we discuss the last type of R genes, whose functions are dependent on direct TAL effector binding to discrete effector binding elements in the promoters. Only five of the so-called executor R genes have been cloned, and commonalities are not clear. We have placed the protein products in two groups for conceptual purposes. Group 1 consists solely of the protein from pepper, BS3, which is predicted to have catalytic function on the basis of homology to a large conserved protein family. Group 2 consists of BS4C-R, XA27, XA10, and XA23, all of which are relatively short proteins from pepper or rice with multiple potential transmembrane domains. Group 2 members have low sequence similarity to proteins of unknown function in closely related species. Firm predictions await further experimentation on these interesting new members to the R gene repertoire, which have potential broad application in new strategies for disease resistance.

Highlights

  • Xanthomonas infects monocotyledonous and dicotyledonous plant species, and the pathogenicity of many species depends in part on the effector proteins secreted by a type III secretion (T3S) system (Leyns et al, 1984; Tampakaki et al, 2004)

  • Thirteen R genes have been cloned for resistance to Xanthomonas diseases—all coming from rice, pepper, or tomato

  • In addition to Bs4, are representatives of the two major classes of R genes, the receptor linked kinases (RLK) and nucleotide binding site leucine rich repeat (NBS-LRR) genes which are represented by Xa21 (RLK, rice), Xa26 (RLK, rice), Xa1 (NBS-LRR, rice), and Bs2 (NBS-LRR, pepper; Yoshimura et al, 1998; Tai et al, 1999; Zhang and Wang, 2013)

Read more

Summary

Introduction

Xanthomonas infects monocotyledonous and dicotyledonous plant species, and the pathogenicity of many species depends in part on the effector proteins secreted by a type III secretion (T3S) system (Leyns et al, 1984; Tampakaki et al, 2004). The transcription activator-like (TAL) effector family is a distinct family of type III effectors, which includes members with cognate susceptibility (S) and/or resistance (R) genes. TAL effectors function as host gene specific transcription factors that can target both S and R genes, leading to enhanced expression and consequential phenotypic effects (Gu et al, 2005; Yang et al, 2006; Kay et al, 2007; Römer et al, 2007). Three types of TAL effector associated R genes have been reported-recessive, dominant nontranscriptional (classical) and dominant TAL effector-dependent transcriptional based resistance. The TAL effector AvrXa7 may target an as yet uncharacterized E gene Xa7 due to the requirements for the effector nuclear localization signals (NLSs) and the transcription acidic activator domain in Xa7-dependent resistance (Hopkins et al, 1992; Yang et al, 2000)

E Gene Variation is in the Promoter
E Proteins are not Homologs of Classical R Proteins
E Genes in Bacterial Spot Disease on Pepper
E Genes in Bacterial Blight Disease of Rice
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.