Abstract

Abstract In New Zealand, a giant coherent “Z” shape is defined by several curvilinear pre-Cenozoic basement terranes that extend across Zealandia for >1500 km along strike. It is widely assumed that this curvature was the result of bending during the Neogene, which together with ∼450 km of dextral displacement on the Alpine fault accommodated a total of ∼750 km of dextral shear through the New Zealand plate boundary zone between the Australian and Pacific plates. This would make it a very simple form of orocline. In fact, we show that its development was surprisingly complex and protracted, with a composite origin. Its western and southern parts were bent as much as 70° in the Mesozoic. In the Late Cretaceous, the already bent terranes were offset sinistrally by ∼250 km along the cross-cutting proto–Alpine fault, which acted as a transform to the rift between East and West Antarctica. Since the Eocene, and after Zealandia had completely separated from Antarctica, the two sides of the Alpine fault have undergone 45° of relative plate rotation, further bending the terranes. However, the eastern part of what appears today to be the same oroclinal structure has been created entirely since the Eocene, and mainly during the Neogene phase of dextral shear through the plate boundary, with large-scale internal bending and shortening. We suggest that multistage and composite evolutions may be typical features of oroclines, which would be difficult to unravel without a rich tectonic and plate motion database, such as that available for the New Zealand region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call