Abstract

Coral reefs consist of various alive elements with specific biological functions. Tubular sponges, as the main coral reefs' constituents, have a marvelous mechanism. They receive nutrients by suctioning from the perforated body (Ostia) and pumping the un-digested materials through the water column from the top mouth (Osculum). This mechanism can be an inspiration for making a device to control or improve sediment/pollutant transport. In the current study, an attempt has been made to evaluate an inspired concept's effects on flow hydrodynamics. In this regard, OpenFOAM® V. 1812 (interFOAM solver) and image processing technique were deployed. The perforated finite-height cylinders (height to diameter ratio of 2.5) with various suction/pump discharges (i.e., J = 150, 300, 350, 400, 450, and 600 lit/h) were considered. The results indicated that increasing the outflow discharge (J ≥ 600 lit/h) could widen the wake by flapping the shear layer. In the vertical plane, the results showed that dipole vortices turned into quadrupole vortex. On the free surface, tip-vortices and counter-rotating vortex pairs (CRVP) generated saw-toothed vortices on two sides of the cylinder. Generating these unique vortices is proof of enhancing the momentum exchange through the water column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.