Abstract
The reconstruction theorem deals with dynamical systems that are given by a map of a compact metric space X together with an observable from X to the real line . In 1981, by use of Whitney’s embedding theorem, Takens proved that if is a (two-sided) diffeomorphism on a compact smooth manifold M with , for generic (T, f) there is a bijection between elements and corresponding sequence , and moreover, in 2002 Takens proved a generalised version for endomorphisms. In natural sciences and physical engineering, there has been an increase in importance of fractal sets and more complicated spaces, and also in mathematics, many topological and dynamical properties and stochastic analysis of such spaces have been studied. In the present paper, by use of some topological methods we extend the Takens’ reconstruction theorems of compact smooth manifolds to reconstruction theorems of ‘non-invertible’ dynamical systems for a large class of compact metric spaces, which contains PL-manifolds, manifolds with branched structures and some fractal sets, e.g. Menger manifolds, Sierpiński carpet and Sierpiński gasket and dendrites, etc.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.