Abstract

Dermal connective tissue is a supportive structure required for skin's barrier function; dysregulated dermal homeostasis results in chronic wounds and fibrotic diseases. The multifunctional cytokine transforming growth factor (TGF) β promotes connective tissue deposition, repair, and fibrosis. TGF-β acts through well-defined canonical pathways; however, the non-canonical pathways through which TGF-β selectively promotes connective tissue deposition are unclear. In dermal fibroblasts, we show that inhibition of the non-canonical TGF-β-activated kinase 1 (TAK1) selectively reduced the ability of TGF-β to induce expression of a cohort of wound healing genes, such as collagens, CCN2, TGF-β1, and IL-6. Fibroblast-specific TAK1-knockout mice showed impaired cutaneous tissue repair and decreased collagen deposition, α-smooth muscle actin and CCN2 expression, proliferating cell nuclear antigen staining, and c-Jun N-terminal kinase and p38, but not Smad3, phosphorylation. TAK1-deficient fibroblasts showed reduced cell proliferation, migration, cell attachment/spreading, and contraction of a floating collagen gel matrix. TAK1-deficient mice also showed progressively reduced skin thickness and collagen deposition. Thus, TAK1 is essential for connective tissue deposition in the dermis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.