Abstract

Activation of free fatty acid receptor 1 (FFAR1; also known as G-protein-coupled receptor 40) by fatty acids stimulated glucose-dependent β-cell insulin secretion in preclinical models. We aimed to assess whether selective pharmacological activation of this receptor by TAK-875 in patients with type 2 diabetes mellitus improved glycaemic control without hypoglycaemia risk. We undertook a phase 2, randomised, double-blind, and placebo-controlled and active-comparator-controlled trial in outpatients with type 2 diabetes who had not responded to diet or metformin treatment. Patients were randomly assigned equally to receive placebo, TAK-875 (6·25, 25, 50, 100, or 200 mg), or glimepiride (4 mg) once daily for 12 weeks. Patients and investigators were masked to treatment assignment. The primary outcome was change in haemoglobin A(1c) (HbA(1c)) from baseline. Analysis included all patients randomly assigned to treatment groups who received at least one dose of double-blind study drug. The trial is registered at ClinicalTrials.gov, NCT01007097. 426 patients were randomly assigned to TAK-875 (n=303), placebo (n=61), and glimepiride (n=62). At week 12, significant least-squares mean reductions in HbA(1c) from baseline occurred in all TAK-875 (ranging from -1·12% [SE 0·113] with 50 mg to -0·65% [0·114] with 6·25 mg) and glimepiride (-1·05% [SE 0·111]) groups versus placebo (-0·13% [SE 0·115]; p value range 0·001 to <0·0001). Treatment-emergent hypoglycaemic events were similar in the TAK-875 and placebo groups (2% [n=7, all TAK-875 groups] vs 3% [n=2]); significantly higher rates were reported in the glimepiride group (19% [n=12]; p value range 0·010-0·002 vs all TAK-875 groups). Incidence of treatment-emergent adverse events was similar in the TAK-875 overall (49%; n=147, all TAK-875 groups) and placebo groups (48%, n=29) and was lower than in the glimepiride group (61%, n=38). TAK-875 significantly improved glycaemic control in patients with type 2 diabetes with minimum risk of hypoglycaemia. The results show that activation of FFAR1 is a viable therapeutic target for treatment of type 2 diabetes. Takeda Global Research and Development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.