Abstract

AbstractTainted flow attacks originate from program inputs maliciously crafted to exploit software vulnerabilities. These attacks are common in server-side scripting languages, such as PHP. In 1997, Ørbæk and Palsberg formalized the problem of detecting these exploits as an instance of type-checking, and gave an O(V 3) algorithm to solve it, where V is the number of program variables. A similar algorithm was, ten years later, implemented on the Pixy tool. In this paper we give an O(V 2) solution to the same problem. Our solution uses Bodik et al.’s extended Static Single Assignment (e-SSA) program representation. The e-SSA form can be efficiently computed and it enables us to solve the problem via a sparse data-flow analysis. Using the same infrastructure, we compared a state-of-the-art data-flow solution with our technique. Both approaches have detected 36 vulnerabilities in well known PHP programs. Our results show that our approach tends to outperform the data-flow algorithm for bigger inputs. We have reported the bugs that we found, and an implementation of our algorithm is now publicly available.KeywordsProgram RepresentationProgram VariableSymbolic ExecutionProgram PointReachability GraphThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.