Abstract

A moderately intense substorm on 1 March 2008, from 0830 to 1000 UT, observed by THEMIS probes and the Ground Based Observatory (GBO) is examined to investigate the global evolution of substorm phenomena. During this interval, all five THEMIS probes are closely aligned along the tail axis near midnight covering a radial range from ∼9 Re to ∼18 Re. After the substorm onset, plasma sheet expansions take place successively at multiple locations in the magnetotail as measured by different probes. The positions of the plasma sheet expansions have a tailward leap progression with an average velocity of ∼36 km/s. There are two types of dipolarization detected in this substorm. The first type is the dipolarization front which is associated with the bursty bulk flow (BBF). While the second type, which we call ‘global dipolarization’, is associated with plasma sheet expansions. In the substorm studied, there are four intensifications as shown in the THEMIS AE index. We can detect the effects of localized and short‐lived magnetic energy release processes occurring in the magnetotail corresponding to each of the four AE intensifications. Furthermore, the inner four probes can detect the global dipolarization signatures ∼4–15 min earlier than plasma sheet expansions, while the outermost probe (P1) cannot detect this before the plasma sheet expansion. These two phenomena are caused by the same process (magnetic energy release process) but the effects detected by probes locally appear delayed. The observations in this case are not sufficient to distinguish between the two competing substorm models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.