Abstract
The density of states of Dirac fermions with a random mass on a two-dimensional lattice is considered. We give the explicit asymptotic form of the single-electron density of states as a function of both energy and (average) Dirac mass, in the regime where all states are localized. We make use of a weak-disorder expansion in the parameter g/m^2, where g is the strength of disorder and m the average Dirac mass for the case in which the evaluation of the (supersymmetric) integrals corresponds to non-uniform solutions of the saddle point equation. The resulting density of states has tails which deviate from the typical pure Gaussian form by an analytic prefactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.