Abstract
We give the exact asymptotics of the tail of the stationary maximal dater in generalized Jackson networks with subexponential service times. This maximal dater, which is an analogue of the workload in an isolated queue, gives the time taken to clear all customers present at some time t when stopping all arrivals that take place later than t. We use the property that a large deviation of the maximal dater is caused by a single large service time at a single station at some time in the distant past of t, in conjunction with fluid limits of generalized Jackson networks, to derive the relevant asymptotics in closed form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.