Abstract

Liver tumor is one of the most lethal cancers due to its low ratio of surgical resection, high recurrence rate, and invasiveness. Photothermal therapy (PTT) possesses many advantages for cancer therapy because of its noninvasive nature. However, most PTT is conducted in the first near-infrared (NIR-I) window, so second near-infrared (NIR-II) photosensitizers with higher penetrating ability and clinical prospects are seriously desirable. Herein, a semiconducting polymer with optimized absorption in NIR-I and NIR-II regions is obtained by ternary copolymerization methodology. The prepared nanoparticle (NP) from the semiconducting polymer is used for treatment of orthotopic liver cancer upon laser irradiation. Compared with an 808 nm laser, a 1064 nm laser leads to more effective inhibition toward orthotopic liver cancer in the same conditions. These results thus demonstrate that the NIR-II polymeric NPs may inspire another aspect for highly efficient therapy of various orthotopic cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.