Abstract

Controllably tailoring alloying anode materials to achieve fast charging and enhanced structural stability is crucial for sodium-ion batteries with high rate and high capacity performance, yet remains a significant challenge owing to the huge volume change and sluggish sodiation kinetics. Here, a chemical tailoring tool is proposed and developed by atomically dispersing high-capacity Ge metal into the rigid and conductive sulfide framework for controllable reconstruction of GeS bonds to synergistically realize high capacity and high rate performance for sodium storage. The integrated GeTiS3 material with stable Ti-S framework and weak GeS bonding delivers high specific capacities of 678 mA h g-1 at 0.3 C over 100 cycles and 209 mA h g-1 at 32 C over 10000 cycles, outperforming most of the reported alloying type anode materials for sodium storage. Interestingly, in situ Raman, X-ray diffraction (XRD), and ex situ transmission electron microscopy (TEM) characterizations reveal the formation of well-dispersed Nax Ge confined in the rigid Ti-S matrix with suppressed volume change after discharge. The synergistically coupled alloying-conversion and surface-dominated redox reactions with enhanced capacitive contribution and high reaction reversibility by a binding-energy-driven atomic scissors method would break new ground on designing a high-rate and high-capacity sodium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call