Abstract

Tailoring materials with prescribed properties and regular structures is a critical and challenging research topic. Early transition metals were found to form supermagic M8C12 metallocarbohedrenes (Met-Cars); however, stable metal carbides are not limited to this common stoichiometry. Utilizing self-developed deep-ultraviolet laser ionization mass spectrometry, here, we report a strategy to generate new titanium carbides by reacting pure Tin clusters with acetylene. Interestingly, two products corresponding to Ti17C2 and Ti19C10 exhibit superior abundances in addition to the Ti8C12 Met-Cars. Using global-minimum search, the structures of Ti17C2 and Ti19C10 are determined to be an ellipsoidal D4d and a rod-shaped D5h geometry, respectively, both with carbon-capped Ti4C moieties and superatomic features. We illustrate the electronic structures and bonding nature in these carbon-doped superatoms concerning their enhanced stability and local aromaticity, shedding light on a new class of metal-carbide nanomaterials with atomic precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call