Abstract
This work explores the possibility of tailoring the thermal conductivity and thermal expansion of rare earth monosilicates through the introduction of multiple rare earth cations in solid solution. Six rare earth monosilicates are studied: Sc2SiO5, Y2SiO5, Nd2SiO5, Dy2SiO5, Er2SiO5, and Yb2SiO5. Four equimolar binary cation mixtures and a high entropy five-cation equimolar mixture were characterized. Thermal expansion was measured up to 1200 ˚C with X-Ray Diffraction (XRD) and bulk thermal conductivity was measured by Hot Disk technique. The linear coefficient of thermal expansion (CTE) of mixed-cation systems followed a rule of mixtures, with average linear CTE between 6 - 9x10-6 /˚C. Scandium monosilicate showed a lower linear CTE value as well as a notably lower degree of CTE anisotropy than other rare earth monosilicates. Thermal conductivity was found to decrease below rule of mixtures values through increasing heterogeneity in rare earth cation mass and ionic radii, as expected for the thermal conductivity of solid-solutions. The high entropy mixture RE2SiO5 (RE=Sc, Y, Dy, Er, and Yb) shows a thermal conductivity of 1.06 W/mK at room temperature, demonstrating that high entropy rare earth silicates are strong candidates for novel dual-purpose thermal and environmental barrier coatings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.