Abstract

Low thermal conductivity in condensed matter is critical to a diverse range of technologies, such as high efficient thermoelectrics and thermal insulation. It is thus important to fabricate, grow, or assemble structures that can reach a low limit. For III-nitride with high intrinsic thermal conductivity, how to utilize periodic nanostructures to manipulate phonons and achieve controllable low thermal conductivity is rarely studied. Recently, periodically self-organized arrays of nano-grooves on AlN (0001) surface have been observed experimentally. Inspired by this, we perform non-equilibrium molecular dynamics simulations to explore the thermal transport in such structures. The dependence of thermal conductivity on the periodic length of the nano-grooves and the angle of the side wall is systematically studied. Remarkably, results show that the thermal conductivity has a minimum value for a critical periodic length, which is one order of magnitude lower than the counterpart bulk value. The intrinsic high thermal conductivity of AlN can be robustly manipulated to the desired value by rationally designing the periodic nano-groove structure on the surface of the film. The detailed mechanism is provided by the frequency dependent heat current spectrum and phonon polarization analysis, along with the semi-empirical theoretical model. The understanding gained from this study offers an alternative route for tailoring the thermal conductivity of nanofilms by periodically patterned nano-grooves, which has large impact in relevant applications involving thermal transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.