Abstract

We investigate the linear viscoelasticity of polymer gels produced by the dispersion of gluten proteins in water:ethanol binary mixtures with various ethanol contents, from pure water to 60% v/v ethanol. We show that the complex viscoelasticity of the gels exhibits a time/solvent composition superposition principle, demonstrating the self-similarity of the gels produced in different binary solvents. All gels can be regarded as near critical gels with characteristic rheological parameters, elastic plateau and characteristic relaxation time, which are related one to another, as a consequence of self-similarity, and span several orders of magnitude when changing the solvent composition. Thanks to calorimetry and neutron scattering experiments, we evidencea co-solvency effect with a better solvation of the complex polymer-like chains of the gluten proteins as the amount of ethanol increases. Overall the gel viscoelasticity can be accounted for by a unique characteristic length characterizing the crosslink density of the supramolecular network, which is solvent composition-dependent. On a molecular level, these findings could be interpreted as a transition of the supramolecular interactions, mainly H-bonds, from intra- to interchains, which would be facilitated by the disruption of hydrophobic interactions by ethanol molecules. This work provides new insight for tailoring the gelation process of complex polymer gels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.