Abstract

Carbon films have been considered suitable to be applied in water lubrication since they exhibit excellent friction-reducing and wear resistance, chemical inertness, etc. However, the basic understanding of tribological behaviors of carbon-based films under water lubrication still needs to be explored. In the present work, carbon films with different nanostructures were prepared by the electron cyclotron resonance (ECR) plasma nano-surface manufacturing system, and micro-textures with different sizes were prepared on the surface of carbon films by plasma etching. The influence of nanostructure and surface texture on the tribological properties of carbon films was investigated. The results show that different nanostructured carbon films can obtain lower friction coefficients and longer wear life under water lubrication than under dry condition. Due to low surface roughness, high hardness, and compact structure, the tribological properties of amorphous carbon (a-C) films under water lubrication are much better than those of graphene sheet-embedded carbon (GSEC) films. The prepared surface texture has a negative effect on the hard a-C film, but it can make the soft GSEC film generate soft wear debris at the initial stage. With the action of water, the soft wear debris is bonded on the surface of the contacting ball to form a silt-like transfer film, which increases the wear life by nearly three orders of magnitude. These results extend the basic understanding of the tribological behavior of carbon film under water lubrication, which is crucial in both fundamental and applied science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call