Abstract

Nanocrystalline titania (TiO2) is one of the most investigated crystalline nanostructured systems in the field of materials science. The technological applications of this material are related to its optoelectronic and photocatalytic properties, which in turn are strongly dependent on the crystal phase (i.e., anatase, brookite, and rutile), particle size, and surface structure. However, systematic comparative studies of all its crystal phases are scarce in literature due to difficulties in providing a controlled synthesis, which is primarily important in obtaining the brookite phase. In this report, the synthesis of TiO2 nanoparticles in the anatase, brookite, and rutile structures was explored, using amorphous TiO2 as a common precursor under microwave-assisted hydrothermal conditions. The influence of parameters such as temperature, acidity, and precursor concentration on phase crystallization were investigated. The TiO2 materials (amorphous and crystalline phases as well as commercial Degussa P25) were systematically characterized using Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV-visible reflectance spectroscopy, and dynamic and electrophoretic light scattering. The bactericidal activity and photocatalytic antibacterial effectiveness of each material were evaluated through the determination of the minimum inhibitory and bactericidal concentrations, and via the mortality kinetic method under ultraviolet (UV) illumination under similar conditions with two bacterial groups of unique cellular structures: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The results are discussed with particular emphasis on the relationship between the synthesis parameters (acidity, precursor concentration, temperature and reaction time) and the bactericidal properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call