Abstract

AbstractThis communication reports on a versatile and substrate‐agnostic method to tune the surface chemistry of conducting polymers with the aim of bridging the chemical mismatch between bioelectronic devices and biological systems. As a proof of concept, the surface of poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is grafted with a short‐chain oligoethylene glycol monolayer to favor the formation of cell‐derived supported lipid bilayers (SLBs). This method is tuned to optimize the affinity between the supported lipid bilayer and the conducting polymer, leading to significant improvements in bilayer quality and therefore electronic readouts. To validate the impact of surface functionalization on the system's ability to transduce biological phenomena into quantifiable electronic signals, the activity of a virus commonly used as a surrogate for SARS‐CoV‐2 (mouse hepatitis virus) is monitored with and without surface treatment. The functionalized devices exhibit significant improvements in electronic output, stemming from the improved SLB quality, therefore strengthening the case for the use of such an approach in membrane‐on‐a‐chip systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.