Abstract

A yeast phenylalanyl-tRNA synthetase variant with T415G mutation (yPheRS (T415G)) was rationally designed to recognize various phenylalanine (Phe) analogs allowing site-specific incorporation into an amber site of a protein in E. coli. However, the relaxed substrate specificity of yPheRS (T415G) led to a significant tryptophan (Trp) misincorporation restricting the utility of yPheRS for biosynthesis of proteins containing a Phe analog. In order to obtain yPheRS variants with high substrate-specificity toward a Phe analog, we developed a general high-throughput screening method. This method uses fluorescence reduction of green fluorescence protein (GFP) upon efficient introduction of a Phe analog into multiple sites of GFP by breaking the degeneracy of the Phe codons. Combined use of positive and negative screenings of a yPheRS saturation library led to a yPheRS variant (yPheRS_naph) very selective toward 2-l-naphthylalanine (2Nal), a model Phe analog. The yPheRS_naph exhibited 6-fold higher relative activity toward 2Nal (vs Trp) in ATP-PPi exchange assays and led to high-fidelity incorporation of 2Nal into an amber site of murine dihydrofolate reductase in both minimal and rich media. These results successfully demonstrate that the high-throughput screening method developed can be used to evolve yPheRS to be very selective toward a Phe analog.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call